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This paper presents the development of a tractable 
suboptimum demodulator in a phase-locked loop configuration 
for demodulating a model of a television signal received 
as phase modulation on a sinusoidal carrier. One possible 
application of this development is in the Apollo Unified 
S-Band communication system where television is one of the 
subcarrier signals for some transmission modes employed, 
The available waveform at the demodulator input is assumed 
to be the sum of the phase modulated carrier and a stationary 
Gaussian noise. The suboptimum demodulator is suggested by 
using the Wiener spectrum factorization technique to find 
the transmission poles and zeros of the optimum linear loop 
filter. A simple linear filter is then shown to approximate 
the infinite number of optimum loop poles and zeros that 
arise due to the complicated signal model used. The demodu- 
lator developed is suboptimum in that its mean square error 
in forming a phase estimate is greater than that which is 
theoretically possible using realizable loop filters. 
Although the optimum demodulator is not derived, its mean 
square estimation error is computed and is compared to the 
estimation error for the suboptimum demodulator. This 
comparison is in terms of output signal-to-noise power 
ratios for the two demodulators as the input signal power- 
to-noise spectral density is varied. An important question 
about system stability is answered for the linear equivalent 
suboptimum demodulator obtained when the phase-locked loop 
is in lock. 
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TECHNICAL MEMORANDUM 

(1.0 ) INTRODUCTION 

In the following memorandum we will derive a phase 
demodulator of the phase locked loop (PLL) form that recovers 
a television type (TV) signal. This signal is received as 
phase modulation on a sinusoidal carrier in the presence of 
additive noise. 

Starting with a mathematical model of the signal 
average power spectrum, we derive the PLL demodulator that 
yields the minimum mean square (mms) error estimate of the 
signal. We assume the additive noise received with the 
carrier has a uniform average power spectral density over 
the frequency band of the received PM waveform. 

Due to the complex form of the signal power spectrum, 
the loop filter in the PLL that produces the mrns error esti- 
mate of the signal is difficult to realize. We show t h a t ,  for 
our assumed signal spectrum model, a simple transversal. f i L t e x  
in the loop gives an estimate close to the theoretical ms 
error estimate. 

The phase locked loop that gives the mms error 
ener estimate is a Wiener filter and it is obtained by the W 1  

spectrum factorization technique. We find that the internal 
filter in the optimum PLL has countably infinite isolated 
poles and zeros in the left half of the s-plane. We derive 
a simple transversal filter with countably infinite isolated 
poles that can be adjusted so that the optimum PLL is closely 
approximated. 

Our justification for selecting as a transmission 
mode the direct phase modulation of the signal onto the 
carrier is the following. For many kinds of signal spectra, 
PM is close to the optimum form of angle modulation when we 
are operating under a channel mean-square bandwidth constraint 
or a demodulator threshold constraint, and the criterion of 
performance used is mms error between the modulating signal 
and its estimate (Ref. 1). 



The only criterion of performance we consider in this 
memorandum is m s  error between the signal and the signal esti- 
mate. When the modulating signals spectrum is assumed to be 
that of a TV picture, the performance of the demodulator must 
be evaluated subjectively by the viewer, since the viewer is 
the sink for the TV information (Ref. 2). Based on subjective 
evaluation by the viewer,it is known that the optimum PM de- 
modulator for a TV signal need not be the PM demodulator t h a t  
produces a mms error estimate of the TV signal. The criterion 
of mms error can be misleading when applied to anything as 
subjective as TV picture quality (Ref. 3). If subjective effects 
in TV can be described in the frequency domain by weighting the 
power spectrum of the TV signal before transmission, the mms 
error optimization described in this memorandum can be adapted 
to give an accurate optimum demodulator for phase modulated TV, 

(2.0) DISCUSSION 

The essential components of the PM system we will 
consider are shown in Figure 1, The demodulator in this system 
is a phase locked loop with a post loop filter. The internal 
loop filter and the post loop filter are both assumed to be 
linear and time invariant (LTI). The Laplace domain transfer 
functions for these two filters are F(s) and Fo(s) as noted i n  

- 
Figure 1. In all cases the filters are assumed to be physicalby 
realizable. 

We assume the channel interference to be additive 
stationary Gaussian noise with zero mean value. We also assume 
that the receiver IF filter is LTI and is sufficiently wideband 
compared to the significant spectrum of s (t) that n(t) is 
approximately white compared with s (t) . That is, the correlation 
interval of n(t) is much shorter than the correlation interval 
of s (t) . Then n (t) can be approximated by a white Gaussian 
noise with a two-sided power spectral density No/2. 

(2.1) Baseband Model of PLL Demodulator 

For proper demodulation of 0 (t) = Kt m (t) , the PLL 
reference r (t) must "lock on8'the incoming waveform s (t) suen  ,. & 

that sin [e(t) - e(t)3 -- e(t) - 0(t) most of the time. Then 
the demodulator in Figure 1 is equivalent to the linear Lowpass 
system in Figure 2. This is the above threshold model for the 
demodulator that is obtained if the ratio of signal power-to- 

r\ 

noise spectral density, ~A'/N~, is above a threshold value: and 



the LPF F(s) is properly designed for B(t) (Ref. 4, Sec. 5,5) 
In Figure 2 we have a new noise function n' (t)/A related to the 
n(t) in Figure 1. For a white noise n(t) with two-sided density 
No/2, the function nt(t) is also white with the same two-sided 

density No/2. Then nl(t)/A is white with two-sided density 
-I 

N ~ / ~ A ~ .  In Figure 2, H(s) is the closed loop transfer function 

between points (1) and (21, while T (s) is the overall transfer 
function between (1) and (4). 

The criterion of performance we use is the m s  error 
between the desired signal B(t) and its estimate that is generated 
by our demodulator. The system in Figure 2 is linear. The 

A 

transfer function H(s) that makes @(t) a mms error estimate of 
B(t) is a realizable Wiener filter. The filter H(s) must operate 
on the input B(T) + nl(T)/A for all T < t to produce the estimate 
e (t) . If the transfer function H(s) was permitted to be an-- 
realizable, we know that the mms error estimate of e(t) is 
obtained when H(s) processes 8 (T) + n' (T)/A for -m < T < 4-.. to 

form the estimate 0 (t). But if we attempt a realizable approxi- 
mation to the unrealizable optimum filter by using time delty 6, 

A 

we cannot maintain sin [B (t) - 8 (t+6) ] - 0 (t) - 8 (t+6) ; and 
hence our PLL will not stay locked onto the signal 8(t), Then 
H(s) must be a realizable Wiener filter with no time delay in 

A 

forming the estimate 0 (t) (Ref. 4, Page 139) . 
Since the filter Fo(s) is not part of the feedback 

- 

loop in Figure 2,we can introduce time delay in this post loop 
filter'and improve our estimate of 8(t). For a sufficiently 
long time delay in Fo (s) we would process (T ) + n' (r ) /A f o r  

effectively the entire interval -m < T < +m to produce the 
A 

irreducible mms error estimate em(t) (Ref. 5, Sec. 6 . 2 . 3 ) .  

The derivation of the optimum realizable Fo(s) with delay is 

outlined in Appendix I. 

Because of the complex nature of the TV type signal 
B(t) to be considered here, it does not seem practical to con- 
struct an optimum realizable Fo(s) with delay. However, we w i l l  

find a fairly simple circuit for the optimum H(s). 



The Optimum Loop Filter 

The realizable mms error filter that estimates 6 ( t )  
given B(T) + nt(r)/A, T 2 t, will be denoted by Ho(s). For a 

white noise n' (t) the expression for Ho(s) has a simple form. 
2 If we let N" = No/2A be the two-sided power spectral density 

of n' (t)/A, we have 

* 
where 1 y(o) l 2  = y(o) y (o) = 1 + Se (o)/N1' ( 2 )  

and Y (o) consists of all the poles and zeros of / Y (o) / in the 
upper-half o-plane (Ref. 4, Equation 5.110). The complex ccc- 
jugate of Y(o) is Y*(o). 

The loop filter F (s) that corresponds to Hn ( j w )  follows 
V 

directly from Figure 2. We denote this optimum loop filter by 
F (jo). Then LOP 

To specify the optimum PLL demodulator for the mms error estimate 
of e(t), all that is needed is the function Y(w). However, f o r  
the signal e(t) we want to consider, it is not easy to find Y! (w) .  

(2.3) Minimum Mean Square Error 

With the realizable closed loop transfer function R _ ( ~ L J ) , ~  
u 

we get the mms error in estimating O(t) with zero time delay. 
This error is (Ref. 5, Sec. 6.2.4) 



When no time delay is permitted in estimating O b t ) ,  
the post loop filter Fo(jw) = Kr, a constant. If sufficient 

time delay is possible and the appropriate realizable filter 

Fo (jw) is used, the estimate approaches im (t) and the e s t i m a m -  

tion error approaches the irreducible mms error (Ref. 5, 
Sec. 6.2.3) 

(2.4) The Signal Spectrum Model 

The signal 0(t) we consider in this memorandum is 
derived from the TV signal model due to L. E. Franks ( R e f ,  3, 
Sec. 5). The average signal power spectrum from Frank" model 
is given by 

- 
Here S(f-x) is the unit frequency domain impulse at f = x, d is 

th the mean value of the picture luminance, WL is the 1- Fourier 

coefficient of the periodic (non-random) part of the signal, a 
is the fraction of the total signal time taken by the synchronizing 
and blanking signals; and NT is the time from the start of one 
frame to the start of the following frame. 

The average signal power spectrum part due to random 
variations in the signal is modeled by the three factors G h ( f ) ,  

Gv(f) and Gt(f). These are defined by 
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and 

sinh (Te hv) 

Gv (f) = cosh (Te hv) - cos wTr 

sinh (NT A,) 
L 

Gt (f) = cosh (NT ht) - coS (NTw) 

where w = 2nf. The function Gh(f) represents horizontal picture 

correlation element-to-element, the function GT,(f) represents 

vertical picture correlation line-to-line; and the function 
Gt(f) represents frame-to-frame correlation. The parameters in 

(7), (8), and (9) are defined in Appendix 11. 

A typical graph of Gh Gv Gt is shown as the shaded 

part of Figure 3. The factor Gh Gv acts as an envelope for 

the more rapidly oscillating Gt function. From (7 )  we see that 
-2 the peaks of the envelope Gh Gv decay with frequency as w for 

large w . 
Any filter optimization based on the signal model in 

(6) is complicated by the fine comb structure that Gt introduces. 

We can set Gt = 1 if there is no frame-to-frame correlation in 

the picture. In this case the envelope Gh Gv becomes the spectrum 

of the random part of the signal model. 

In this memorandum the signal e(t) to be considered 
is derived from Franks' model by ornittins frame-to-frame corre- 
lation and the non-random components from the model. The signal 
8 (t) then has the spectrum 

where Gh and Gv are given in (7) and (8) . The energy in S, ( w  1 
" 

is concentrated at integer multiples of 1/T where T is the line 
scan interval in seconds (Appendix 11). 



(2.5) The Optimum Loop Filter for the Limiting Case 6, = 1, 

From (3) the optimum loop filter F (jw) in Fi.gure 2 
lop 

is determined once we find Y(w). As a preliminary step in 
finding Y ( w )  for S, (w) in (10) we first derive Y (w) assuming 

the signal spectrum is Gv only. Then with Se(w) = Gv and o =: T A 
e v" 

] ~ ( w )  l 2  = 1 + (N") sinh (D) cash (Dl - cos (wT)' 

and by analytic continuation in the S-plane we can form 

Y (s) Y (-s) = cosh (D) + (N1')-' sinh (D) - cosh (ST) 
cosh (D) - cosh (ST) (3-2 1 

It is simple to factor (12) to get its poles and zeros (p-a:. 
The p-z of (12) in the left half of the S-plane correspond to 
the p-z of Y (w) Y* (w) in the upper half of the w-plane. Then 
Y(s) is formed from the p-z of (12) in the left half S-plane. 
The poles of (12) follow by factoring cosh (ST) = cosh (D), 
These poles occur at 

where n = 0, 1, 2, =.- .  The zeros follow from cosh (ST) = cosh 0) + 
(Nu)-' sinh (D). The zeros occur at 

s = [+cash-I [cosh (D) + (N")-' sinh (D)] + j 2nm] (14) T - - 

where m = 0, 1, 2, . * .  . The p-z of Y (s) Y (-s) are simple and 
countably infinite in the S-plane. The p-z of Y(s) are those  s 
values in (13) and (14) that have negative real parts as shewn in 

Figure 4. The real part of the zeros is - (l/T) cosh-I R where 
R = cosh D + (N" ) -' sinh (D) . 



Although there are an infinite number of poles and zeros 
for Y(S) when we let Se(w) = Gv, it is easy to show that a simple 

structure realizes the p-z of Figure 4. We find in Appendix III 
that Y(s) is realized by the delay-line circuit (comb Filter) 
shown in Figure 5. 

(2.6) The Optimum Loop Filter for S, (w) = G, Gx,. 

Substituting Gh and Gv from (7) and (8) we get 

A L  
l +  2 2 * (N*)-l 

sinh (D) 

w +A C O S ~  (D) - cos (wT) ' 

- 
where A = Ah, D = T e Av' w = 2rf, k = d2 - 321 and N* = Nnhh/2k. 

Using analytic continuation into the S-plane we get 

2 2 
Y (s) Y (-s) = (A -s ) [cosh(~)-cosh(sT)I + A 2  (N*)-l sinh(D) (16) 

2 2 
P 

(A -s ) [cosh (D) -cosh (ST) ] 

The poles and zeros of Y(s) are the left-half S-plane roots of 
the denominator and numerator of (16), respectively. The constant 
parameters A, D, T and N* are real and positive. Then we see 
that cosh (D) > 1 and sinh (D) > D > 0. If A -t + a and N* is 
held constant, the zeros of ~ ( s )  in (16) are the left-half S-piape 

roots of cosh (D) + (N*)-' sinh (D) - cosh (ST) = 0. T h a t  is, 
the solution for Y (s) in (16) converges to the solution :found 
from (12) when N* = N". 

In a practical situation we can assume that A h  > >  T - " ~  
-. 

That is, there are many oscillations of So = Gh Gv between w = 0 

and the half-power frequency w = Ah of the envelope Gh. This 

suggests that we find the zeros of Y(s) in (16) using a computer 
search of the S-plane around the zeros shown in Figure 4 ,  



The zeros of Y(s) are solutions of the pair of sima~ltaneorss 
equations in x and y that result when s = x + jy is substituted i f i  

the numerator of (16); and we equate real and imaginary parts to 
zero. The pair of simultaneous equations is (17). 

2 2 2 2 (A + y - x )  cosh (D) + (A /N*) sinh (D) = 

2 2 2  (A +y -x ) cosh (xT) cos (yT) + 2xy sinh (xT) sin ( y T )  

2 2 2 -2xy cosh (Dl = (A +y -x ) sinh (xT) sin (yT) 

-2xy cosh (xT) cos (yT) i1 71 

Several properties of the solutions of (17) are apparent, 

(i) If A, D and T are held constant and N* -+ +- m, the 
numerator approaches the denominator in (16), and Y(s) appreaches 
unity. On the real axis, y = 0 in (l7), and the real r oo t s  are 
solutions of (18). 

2 2 2 2 2 
( A  -x ) cosh (D) + (A /N*) sinh (D) = (A -x ) cosh (xT) (18) 

Because of the existance of two real negative roots of (18) as 
N* + +m, we expect to find more than one real negative root sf 
(18) for finite N*. The negative roots of (18) for N* -+ +a are 
x = -A and x = -D/T. 

(ii) Since cosh w and cos w are even functions of a 
real w while sinh w and sin w are odd functions of the argument, 
we find that if so = xo + jyo is a solution of (17) then - s o .  

s * and -so* are also solutions where so* is the conjugate of so. 
0 

(iii) Since Y(w) Y*(w) = 1 + S0(u)/Nf' where N" 0 and 

So(w) 2 0, there is no value of w such that Y(w) = 0. T h a t  is, 

there are no imaginary roots of (17). 



(2.7) Numerical Solution for Y ( w )  . 
A special computer program was used to find solutions 

of (17) (Ref. 6). Two sets of signal parameters were considered 
corresponding to models for Broadcast Television (BCTV) and 
PICTUREPHONE Television (PPTV) (Ref. 3, Sec. 5,6) . 

For BCTV we used pv = ph = 0.9, Te/T = 0.00128, and 

T = 63 x lom6 sec. Since pv = exp [-hv T,] = exp I-DI = 0.9, we 
- get D = Rn [1/0.9] and h = Ah - Te -' D. For PPTV we used 

- 
'v - 'h = 0.9, Te/T = 0.0041, and T = 63 x sec. Then for 

these cases the constants in (17) were 

T = 63 x sec. 
BCTV : 

6 A = 12.4 x 10 D 

b* = a sinh (D) 
cosh (D) - 1' a a parameter to be assigned. 

T = 63 x sec. 
PPTV : 

6 A = 3.84 x 10 D 

* = a sinh (D) 
C O S ~  (D) - 1 

The values of a were selected to give a broad range of 
signal-to-noise ratios. We note that S8 (0) = sinh (Dl/ [cash (D) - 11 . 
Then 



We used the values a x lo4 = 7.5, 10, 25, 50, and 75 
corresponding to signal-to-noise density ratios at w = 0 - - 

between 1.33 x lo2 and 1.33 x lo3 in (19). 

The graphs of the first 100 zeros of (17) in the upper- 
left quadrant of the S-plane are shown in Figures 6 and 7 corres- 
ponding to BCTV and PPTV, respectively. In each figure the locus 
of zeros varies with the parameter a. For each a there is one 
real zero at the x intercept of the locus of zeros. A second 
real zero of (18) also exists for each combination of values of 
a and A. For all values of a and A considered here, this second 
real zero was very close to -A. The effect of this zero is 
canceled by the pole of Y(s) that exists at -A. 

We see that as the imaginary part of the zero position 
increases the real part approaches -D/T which is the locus of 
the poles of Y(s). We find that the zeros and poles of Y(s1 
effectively cancel beyond the first hundred or so. This caneella- 
tion is reasonable since the signal spectrum S8(w) tends to zero 

as o approaches + m  while the noise density N* is fixed. When 
the noise becomes large compared to the signal, the optimum filter 
H (s) must approach zero. A zero transfer function Ho(s) is 
0 - 
obtained when Y(s) = 1. But Y(s) = 1 when all zeros and poles 
cancel and the gain constant of Y(s) is unity. 

(2.8) Synthesis of a Transfer Function to Approximate YBs). 

The synthesis of the transfer function y(s) when 
Se(u) = G G appears to be very difficult. However, the h v 
transmission poles of ~ ( s )  are the same as the poles in equa- 
tion (13). Hence the poles of our Y(S) are realized by the 
transfer function from (3) to (4) in Figure 5. There is a 
pole of ~ ( s )  at s = -A, but as we pointed out before this pole 
is canceled very well by a zero of ~ ( s )  near -A, for the values 
of the parameters we consider. 

Since the simple feedforward transfer function from 
points (2) to (3) in Figure 5 can generate zeros on a line 
parallel to the j-axis at intervals j2~rn/T, n = 0, +1, i -2 ,  a - * ,  

it seems there should be some technique for altering the circuit 
in Figure 5 to get the transmission zeros shown in Figures 6 and 
7. Several alterations of the feedforward transfer function ( 2 )  
to (3) in Figure 5 were investigated. We changed the transfer 
function (2) to (3) to Fi (s) , i = 1, 2, 3, shown in Figure 8 where 



and G3(s) = K(s+a)/(s+wh), 

with 0 < a < wh, and 0 < k < 1. - - - - 

The effect of Gl(s) is to cause the zeros of the 

transfer function Fl(s) in Figure 8 to move away from the 
- 

j-axis as we increase Iwl. The effect of G,(s) is to cause 
L 

the zeros of the transfer function F2(s) to approach -m as 

Iwl approaches zero. Neither of these effects approximate 
the zero locations in Figures 6 and 7 very well. However, 
if G3(s) is used we can adjust K, a and wh for each comhina- 

tion of a and A such that the zeros of F3(s) in Figure 8 are 

close to those in Figures 6 and 7. 

-D Since G3 (s) approaches K for large / s / and since X - e 
where D = Rn [1/0.91 for the loci in Figures 6 and 7, we know 
that F (s) can give us an accurate approximation for the transfer 3 
zeros only if K = 0.9. With this value for K we selected a and 

("h to get the best approximation of the zeros of Y(s) for each 

combination of a and A. 

When (20) is used in Figure 8 we get 

The finite zeros of F3 (s) follow from (21) by substituting 

s = x + jy and solving for solution pairs (x, y) in the system 
of equations 

e - xT cos -xT - Kye sin 

Y - Kye -xT COs (yT) + K (x+a) e -xT sin (yT) 



The program used to find the solutions of (17) was also used to 
solve (22). 

In Figure 6 we show the zeros of F3(s) with corresponding 

uh and a that best approximate the zeros of Y(s) in the BCTV case 

for a values between 0.75 x low3 and 7.5 x For each a we 
search for wh and a that minimize the maximum magnitude of the 

difference of the real parts of the ZerdS of Y(s) and F 3 ( s )  over 

the first 100 zeros of Y(s). The optimization based on only the 
real parts of the zeros of Y(s) and F3(s) is meaningful, since 

the differences in the imaginary parts of the zeros of Y ( s )  and 
F3(s) are approximately zero in the cases we consider (see 

Figure 6). 

The transfer function (21) has two eeros on the negative 
real axis and a real pole at s = -uh. As we see from 22 with 

y = 0, the two real zeros are the solutions of the real equation 

e - xT = (x+wh)/(x+a) K = f (x). 

The two solutions of 23 are shown in Figuke 9. For the values 
of uh, T, K and a we use in F (s) to approximate the zeros of 3 
~ ( s )  in the BCTV and PPTV cases, the most negative real zero 
-a1 is almost equal to -a. 

We may write (21) in the form 

where Fgt (s) has a countable number of finite transmission zeros 

along a locus in the S-plane for each combination of wh, T, K and 

a as shown in Figure 6. Then a transfer function that closely 
approximates the countable number of isolated zeros of Y ( s )  when 
S e  (u) = G G is just 

h v 



and it is obtained by preceeding the filter shown in Figure S 
by the new filter (s+wn) / (s+al ) . 
(2.9) Suboptimum PLL Demodulators 

Using (25) to approximate the transmission zeros of 
Y(s) we get a suboptimum transfer function Ya(s) shown in 

Figure 10. We introduce a gain C in Ya(s) since we must specify 

the gain constant of a transfer function in addition to its 
pole and zero positions. The value that C must have follows 
from a simple argument. Since the optimum filter Ho(jw), for 

the mrns error estimate of B(t) given B(t) + noise, must approach 
zero as w -+ +m whenever lim Se(w)/N" = 0 as w -+ +a, we have - - 
lim Y(jw) = 1 as w + +a. Our approximation Ya(jw) approaches - 
Y(jw) as w + +m. - Then 

lim Ya(s) = 1 = C, 
w++m - 

and C = 1 in Figure 10. 

If we substitute the suboptimum filter Ya (s) f o r  Y IS) 
in equation 1, we get a suboptimum filter H(s) in place of B o ( s ) ,  

The suboptimum H(s) is shown in Figure 11. This follows from 
equation 1 and Figure 10. 

It was pointed out that for the parameters of the BCTV 
and PPTV cases a' and a are nearly equal. If we set a' = a for 
the system in Figure 11, we get the simple result shown in 
Figure 12. The loop filter in Figure 12 is just the cascade of 
a simple feedback delay and an RC lowpass filter. 

(2.10) Minimum Error Optimization of a and wh for the Suboptimun 

Demodulator. 

Deriving a simple circuit with poles and zeros approxi- 
mately equal to those of the optimum Y(s) discussed in section 2-6 
is an intuitively pleasing attack on the suboptimum filter problem, 
indeed it was consideration of the zero loci of Y(s) that led to 
the circuits in Figures 11 and 12. However, the criterion for op- 
timization we are using is mms error. For the assumed suboptimum 



filter structure in Figure 12 the values of a, K, T and. w, t h a t  
L A  

produce a mms error estimate of 0(t) are not necessarily those 
that minimize the distances between the zero positions and the 
pole positions of Y (s) and Ya(s). 

For any filter H (s) used to estimate 0 (t) given 
6 (t) + n' (t)/A, the mean square error is given by 

where S, (w) and N" (w) are the power spectral densities of B (t) 

and n' (t)/A, respectively (Ref. 7, Equation 7-87) . Then we can 

substitute H ( j w )  from Figure 12 and minimize o2 with respect to 
the circuit parameters a, wh, K and T. This search was performed - 
over a and wh with K = 0.9 and T = 63 x for both BCTV an3 

PPTV cases. 

The system in Figure 12 is realizable, and we derive 
for this structure the optimum a and wh for mms error given K -- 
and T. The mms error in estimating e(t) using the optimum 
realizable linear filter is given by (4). We compare the 
optimum realizable linear filter with the circuit in Figure 12 
as follows. For different values of subcarrier signal power, 

2 2 o 2, we plot oe2/02 and oA /o, vs. l/N1'. For each value of 
0 - 

parameter ogL and independentvariable 1/N" we compute on2 from - 
(4) and oL from (27), where (27) is minimized with respect to 

2 2 2 a and oh. We define o, /oo and oR /02 to be the optimum and 

suboptimum demodulator output signal-to-noise power ratios, 
respectively. 



The subcarrier signal power is 

2A . sinh (Te A) 
= k  - dw 

2  2 C O S ~  (Te A) - cos oT 2n w +A 

That is, u e L  = k  (Ref. 3, Appendix B). We note that Nu = No/2A 2 
2  and hence our independent variable is 1/N" = 2 A  /No This is 

the ratio of signal power to noise spectral density No/2 at 

the demodulator input. 

The optimum demodulator output SNR is 

where 

and 

AN" N* = - 
2k 

so* (o) = 
h 2  sinh (D) 
2  2  C O S ~  (Dl - cos wT o + A  



The suboptimum demodulator output SNR is 

Figures 13, 14, 15, and 16 are families of a 2 /oO 2 and oO2/o2 for 

the BCTV and PPTV cases. In each figure the family parameter is 
the subcarrier signal power k. Figures 17 and 18 give the values 
of uh that optimized the circuit in Figure 12 for each value of k 

and 1/NW. For the BCTV case the value of a was approximately 
6 constant at 3 x 10 . Similarly for PPTV the value of a was 

6 approximately (0.9) x 10 . 
(2.11) Stability of the Suboptimum Demodulator 

For the linear circuit in Figure 12 it is relatively 
easy to find the conditions for which the closed loop transfer 
function H(s) is stable. It should be obvious that we need 
stability in our demodulator if it is to perform its task 
properly. 

The open loop transfer function for Figure 12 is 

wh-a 
G(s) = - * 1 

s+a 1 - K exp [-ST] ' 

This is not a rational function of s, and any stability test that 
applies to feedback systems that have rational open loop transfer 
functions must be extended to include (31). The stability test 
we use for our demodulator is a general Nyquist criterion. This 
criterion and the proof of stability for Figure 12 are presented 
in Appendix IV. The condition for stability of the demodulator 
in ~igure 12 is that wh -a > O  and 0 < k < 1. - 
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(3.0) RESULTS AND CONCLUSIONS 

We have developed a tractable suboptimum phase Bselced 
loop demodulator that estimates a TV type signal phase modulated 
on the received carrier. For the two sets of signal parameters 
used, BCTV and PPTV, it was found that the suboptimum PLE 
demodulator phase estimates had mean square errors not much 
larger than the mms errors theoretically possible considering 
all realizable linear internal loop filters for the demodulator, 

2 2 
These results can be seen in the graphs of oe /ao and nR2 /02  

- 

for the BCTV and PPTV cases. 

The suboptimum PLL demodulator was derived by first 
searching for the transmission poles and zeros of the o p t i m m  
demodulators internal loop filter. This search was performed 
using a special computer program to find the real and imaginary 
components of the loop filter poles and zeros. For the phase 
modulation spectrum model used, the optimum internal Loop f i l . ter  
had a countably infinite number of poles and zeros. A f i l t e r  
possessing the optimum poles and zeros has not been found; it 
seems to be a formidable synthesis problem. 

The suboptimum PLL demodulator was obtained by trial 
and error starting from a simple internal loop filter that 
contained time delayed feedback. By augmenting this basic 
internal loop filter with an RC network, we obtained a simple 
internal loop filter with transmission poles identical to 
those of the optimum loop filter and with transmission zeros 
close to the optimum zero positions. 

The suboptimum internal loop filter was developed 
using the circuit theory approach of approximating the optimum 
pole-zero constellation by a tractable suboptimum constellation, 
However, since the performance criterion used was minimum mean 
square error estimation by the PLL demodulator, the circuit 
parameters for the suboptimum PLL demodulator were adjusted to 
get minimum mean square phase estimation error. This parameter 
optimization was made possible by the mean square error expses- 
sion in (27) that is valid for suboptimum as well as optimum 
demodulators. 

The graphs of the optimum and suboptimum output SNR 

ratios a 2 /aO 2 and ae2/a2 are plotted with respect to the 

demodulator input signal power-to-noise power density ratio 
2 

2A /No = 1/NW. The family parameter in each case is the average 

power a = k of the modulation 8 (t) . For any given family, we 0 



find that the member curves are the same except that they are 
shifted along the l/NW axis as k is changed. This behavior is 
apparent from the normalized equations (29) and (30). If we 

2 2 initially calculate ug /ao or o 2/u2 for normalized values of 
6 

N*, the resulting curve is translated along the l/NW axis by 
changing the values of k in l/N" = ~/2kN* where the A are fixed 
for the BCTV and PPTV cases. The same characteristic applies 
to the families of wh plotted with respect to l/NW with k as 

a parameter. The value of a is essentially constant at 3 x 10 
6 

for BCTV and 0.9 x lo6 for PPTV. 

The stability of the suboptimum PLL demodulator while 
in its linear range of operation was investigated using a 
generalized Nyquist criterion applicable to the nonratisnal 
loop filter transfer function. The conditi-on for stability 
obtained was 0 < K < 1 under the assumption wh - a > 0 made at - 
the outset of our derivation. The condition 0 < K < 1 is also 
the requirement for open loop stability of the suboptimum 
demodulator. The suboptimum demodulator we have derived is 
valid only when the PLL is in lock such that we can make the 

A 

assumption that 0(t) - 8(t) = 0. The stability analysis we 
performed is based on this linear assumption. When the PLL 
demodulator is not in lock we have not shown that it will lock  
up. That is, nothing has been said about the stability of the 
demodulator when it is not locked onto the modulated signal, 
A solution to this nonlinear stochastic acquisition problem 
is not known at this time. 

w .  0. w;, 
W. D. Wynn 

Attachment 
Figures 1-19 
Appendices I-IV 
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FIGURE 3 - POWER SPECTRAL DENSITY-,OF - - -- VIDEO SIGNAL WITH FRAME-TO-FRAME CORRELATION, 
QUALITATIVE PLOT OF Gh(f)Gv(f)Gt(f) 







X - AXIS 

FIGURE 6 - POLES AND ZEROS OF \Y(s) AND F~+(S)  IN UPPER-LEFT QUADRANT OF THE S-PLANE FOR BCTV 
PARAMETERS AND a = 0.75 x 10-3,10-3,2.5 x 10-3,5 x 10-3, AND 7.5 x 10-3. 



X - AXIS 

FIGURE 7 - ZEROS OF \Y (s) IN  WE UPPER-LEFT QUADRANT OF THE S-PLANE FOR PPTV PARAMETERS 
AND a = 0.75 x 10-3,105.2.5 x lom3; 5 x AND 7.5 x lo5. 
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FIGURE 9 - GRAPHICAL SOLUTION FOR THE TWO REAL ROOTS OF Fj(S) 



. . . - - - .- - - - - 

FIGURE 10 - A SUBOPTIMUM FILTER THAT APPROXIMATES \k(S) 
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FIGURE 1 1 - THE ABOVE-THRESHOLD BASEBAND EQUIVALENT PHASE LOCKED LOOP 
TV DEMODULATOR 



Baseband Equivalent 
of Received Modulated 
Carrier Plus Noise 

b 

(Differentiator) --, S 

A 
0(t> 1 - I 

n 

Required 
Phase Estimate 

131 
(V.C.O.) 

FIGURE 12-- THE REDUCED FORM FOR-THE DEMODULATOR IN FIGURE 1 1 WHEN a = a' 



FIGURE 13 - OPTIMUM SIGNAL-TO-NOISE RATIO CURVES FOR THE BCTV CASE. (go2 5 0.25) 



FIGURE 14 - SUBOPTIMUM SIGNAL-TO-NOISE RATIO CURVES FOR THE BCTV CASE. ( u 2  < 0.25) 



FIGURE 15 - OPTIMUM SIGNAL-TO-NOISE RATIO CURVES FOR PPTV CASE. (go2 <, 0.25) 



FIGURE 16 - SUBOPTIMUM SIGNAL-TO-NOISE RATIO CURVES FOR PPTV CASE. (a 5 0.25)- 
I+  



FIGURE 17 -VARIATIONS lNoh vs. ~ A * / N ~  FOR BCTV CASE. 



FIGURE 18 - VARIATIONS lNoh VS. 2 ~ ~ 1 ~ 0  FOR PPTV CASE. 





APPENDIX I 

THE OPTIMUM POST LOOP FILTER WITH LONG DELAY 

When no time delay is permitted in estimating B(t), 
the optimum post loop filter is Fo(s) = Kr. Then the estimates 

at points (2) and (4) in Figure 2 are identical. With sufficiently 
A 

long time delay allowed in Fo(s) we can approach Bm(t) and the 

error in the estimate is approximately the irreducible mms error. 
The post loop filter with delay is a realizable filter that 
can be derived from FLoP(jw) and To(jw), where To(jw) is the 

unrealizable Wiener filter that yields the absolute mms error 
A 

estimate 0-(t). The unrealizable Wiener filter is given by 

where f is the Fourier transform operation. For any signals B(t) 
we will consider here, the impulse response to(t) of the 

unrealizable filter (4) tends to zero as t+p. Then if 6 > 0 is 
sufficiently large, the impulse response of the filter 

is close to zero for all t < 0. We can use the realizable filter 

t - > 0 
GO(ju) I+ go(t) = (A- 3 

t < O  

in place of T (jo), and the realizable estimate we get with go(t) 
0, 

will approach O m  (t) as 6++m. 



With To (jo) replaced by Go (jw) the optimum realizable 

output filter with delay 6 is 

where Ho (jo) and Go (jo) are given by (1) and (A-3) . 



APPENDIX I1 

DEFINITION OF TERMS IN THE TV SIGNAL MODEL 

The parameters contained in random signal parts of S ( w )  
are defined as follows. 

- 
(i) d2 - a2 = Variance of luminance of the picture. 

(ii) Te = Time interval equivalent to the distance between 

adjacent lines at beam scanner velocity. 

(iii) Ah, Av = Poisson rate parameters describing luminance 

process in the horizontal and vertical directions, 
respectively. 

(iv) T = line scan interval in seconds, i.e., the time from 
start of a line to start of next line. 

(v) N = Number of lines per frame. 

hi) At = Poisson rate parameter describing luminance process 
frame-to-frame. 

Given the values of N, T, and Te, the values of Ah, hv 

and At follow from the expressions 

and pt = exp (-At NT) 

where the p's are determined emperically. Usually N and T are 
known and Te is found from the ratio Te/T. This is the procedure 

used in L. E. Franks' Paper. 



APPENDIX I11 

The transfer zeros and poles of the Y(s) in Figure 5 
are generated separately by the transfer functions from points 
(2) to (3) and (3) to (4) , respectively, when we properly specify 
V and K. To show that this is true we consider the transfer 
functions 

I 

G(S) = 1 - K exp [-stel , O < K < l  - - 

and V(s) = 1 - V exp [-ste], 0 - < V - < 1 (A-7) 

The function G (s) has only finite poles and V (s) has only finite 
zeros. The poles of G(s) are 

and the zeros of V(s) are 

The pole positions of G(s) are the same as the pole 
positions of Y (s) in (13) when t = T and Rn (1/K) = D or l 
K = exp [-Dl. The zeros of V(s) are the same as the zeros of 

Y (s) in (14) when tt = T and Rn (1/~) = cosh-' R or 

I7 = exp [-cosh-' R] where R = cosh (D) + (NU)-' sinh (D). 



Consider next the product 

(l-~e-'~) (1-Ke +ST) = 2K [e2 - cosh (ST) I 
-D 

= 2e [cosh (D) - cosh (ST) I 
-D 

= 2e x Denominator of Y fs) Y (-S) 

-D since K = e . Also 

= 2 exp [-cosh-' (R) 1 [R-cosh (ST) I 

-1 = 2 exp [-cosh (R) ] x ~umerator of Y (s) Y (-S) 

exp [+ cosh-l (R)] (l-Ve-~~) Then Y(s) = (A- 8 ) 
exp [$ D] 

( l - ~ e - ~ ~ )  
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APPENDIX IV 

A GENERAL NYQUIST CRITERION AND 

THE STABILITY CONDITIONS FOR FIGURE 12. 

With respect to the demodulator in Figure 12 we can 
summarize the general Nyquist criterion (Ref. 8) as follows. 

Theorem: If the impulse response g(t) of G(s) is given by 

where ~ - ~ ( t )  is the unit step at t = 0 and if 

(i) gl (t) is bounded on [0, m) , 

(ii) gl (t) E L' (0, m) , i .e. gl (t) is absolutely integrable 
on [ O ,  4 ,  

and (iv) The Nyquist diagram of G(s) does not encircle or go 
through the critical point (-1, 0) in the G(s) plane; 
then 

(a) The impulse response of the closed loop feedback system 
in Figure 12 is bounded, tends to zero as t++m and is an 

1 element of L (0, m) , and 
(b) For any bounded input, the response of the closed loop 

system is bounded. 

From the convolution theorem (Ref. 9, Sec. 15-18) and result (a) 
of the above theorem it also follows that when (a) holds and any 
absolutely integrable function on (-m, w )  is applied to the closed 
loop feedback system containing G(s), the response is a unique, 
well-defined function. 



If the results (a) and (b) are to hold for Figure 12, 
we must show that our g(t) in (31) satisfies (A-9) and that 
gl (t) satisfies conditions (i) through (iv) . For K < 1 the 

impulse response of G(s) is 

wh-a 
g(t) = f1 - 1 

[s+a 1 - K exp [-ST] 1 
wh-a 

= 3.-I [- s+a K~ exp [-snT] I 

where uo (t-nT) is the unit impulse at t = nT, and 

(A- 11) 

We see that g(t) = 0 for t < 0, hence g(t) has the form in (A-9). 
Consider now 



1 Then if 0 - < K < 1, gl (t) E L (0, w) , and condition (ii) is 
satisfied. If 0 - < K < 1, gl (t) is also bounded on [0, m) and 

lim gl(t) = 0. Then we only need to satisfy condition (iv) to 
t+m 
show stability for the demodulator in Figure 12 when 0 < K < 1. 
Consider then the Nyquist diagram of G(s). We substitute s = jw 
to get 

wh-a 
G(jo) = 

1 
(jw+a) 1 - K cos wT + j K sin wT 

where A = a - Ka cos wT - Ko sin wT 
and B = w - Kw cos wT + Ka sin wT 

The Nyquist diagram of G(s) is obtained by plotting the real and 
imaginary parts of (A-13) in the complex plane. Since we require 
0 < K < 1, there are no values of w where (A-13) becomes unbounded. 
F O ~  w++w, - G(jo)+O, and for o+O, G(jo) + (oh-a)/a(l-K) > 0. If 
G(jo) does encircle or pass through the critical point (-1, 0) 
we must have real axis crossings for the Nyquist diagram that are 
less than or equal to -1. We now consider the real axis crossings 
of G(jw). 



For G(jw) to have a real axis crossing we must have its 
imaginary part equal to zero. Then let 

This implies B = 0 since A and B are bounded for finite w and 
wh-a 0. Then 

KaT sin wT K cos wT - 1 = wT 

Figure 19 shows typical plots of the left and right sides of 
(A-15). The wT values where the two plots intersect are 
substituted into (A-13) to get the real axis cross points. 

Since 0 < K < 1, any intersections of the two 
of K cos wT - 1 an3 KaT sin wT/wT can only occur for I ~ T  
the intervals [(2m-l)~, 2m1~1, m = 1, 2, * - * .  Consider then the 

2 2 real part of G (jw) given by A (wh-a)/ (A + B ) . We noted earlier 

that 0 < + B* < +m for 0 - < K < 1. Also, (oh-a) > 0. Then the 

si'gn of the real part of G(jw) is the same as the sign of A. But 

A = a (1-K cos wT) - K w sin wT 

= a (1-K cos wT) - $. (oT) 2 sin wT wT 

The imaginary part of G(jw) can be zero for wT other than 0 and 
+m only when sin wT/wT < 0. But for such values of @TI A will be 
positive, since a > 0 aKd 0 < K < 1. We can conclude that the 
critical point (-1, 0) cannoF be enclosed or intersected by the 
Nyquist curve of G(s). Then the demodulator in Figure 12 is 
stable for wh - a > O.and 0 - < K < 1. 




